
SPRING 2023: MATH 791 EXAM 3 SOLUTIONS

You will work in teams on this exam. You may use your notes, the Daily Summary, and any homework you
have done, but you may not consult any other sources, including, any algebra textbook, the internet, any
graduate students not on your team, or any professor except your Math 791 instructor. You may not cite
without proof any facts not covered in class or the homework. All members of each team should contribute
to the team’s effort. The solutions should be typeset in LaTex. Each team member should also participate
in the typesetting effort. Each team should upload a pdf file of its solution to Canvas no later than 5pm,
Friday May 12. Note: Please do not upload solutions in any other format.

Each problem is worth 10 points. To receive full credit, all proofs must be complete and contain the
appropriate amount of detail. Good luck on the exam!

1. Prove the following statements about finite fields. You may use the following fact: Let F be a field and
f(x) ∈ F [x] a non-constant polynomial. If f(x) and f ′(x) are relatively prime, then f(x) has distinct roots
in its splitting field.

(i) If F is a finite field, then F contains a subfield isomorphic to Zp, p prime, and |F | = pn, for some n.
(ii) Given a prime p and an integer n ≥ 1, there exists a field F with pn elements, namely the splitting

field of xp
n − x over Zp. Prove this by showing that F turns out to be the set of distinct roots of

xp
n − x.

(iii) If F is a field with pn elements, then F is a splitting field for xp
n − x over Zp. Conclude (with

justification) that any two fields with pn elements are isomorphic.
(iv) Suppose F ⊆ K are finite fields with |F | = pn and |K| = pm. Then n | m. Conversely, if K is a field

with pm elements and n | m, then there exists a subfield F ⊆ K with |F | = pn.
(v) If K is a finite field with |K| = pm, then there is a unique subfield F of K with |F | = pn, for all n

dividing m.

Solution. For (i), define φ : Z → F by φ(0) := 0F and φ(n) := nF , φ(−n) := −nF , for n > 0, where nF
means 1F + · · · + 1F , n times. It is easy to check that φ is a ring homomorphism. Since F is an integral
domain, the kernel of φ must be generated by a prime p. Thus, Zp is isomorphic to a subring of F . Without
loss of generality, we may assume Zp ⊆ F . Since F may be regarded as a vector space over the finite field
Zp, we have |F | = pn, if n = dimZp(F ).

For (ii), let F denote the splitting field of f(x) := xp
n−x over Zp. Since f(x) and f ′(x) are relatively prime

in Zp[x], f(x) has pn distinct roots in F . Now, if α, β ∈ F are roots of f(x), then (α+β)p
n

= αp
n

+βp
n

= α+β

and (αβ)p
n

= αp
n

βp
n

= αβ, hence α + β and αβ are roots of f(x). Similarly, 0, −α and α−1 (α 6= 0) are
roots of f(x) Thus, the set of pn distinct roots of f(x) form a subfield of F , and since F is the smallest field
containing the roots of f(x), the elements of F are the roots of f(x). Thus, |F | = pn.

For (iii), since F ∗ is a finite group of order pn−1, with 1 ∈ F as the identity element, we have αp
n−1 = 1,

for all α ∈ F ∗. Thus, for all such α, αp
n

= α and therefore each α is a root of f(x) := xp
n − x ∈ Zp[x].

Since 0 is also a root of f(x), it follows that F contains pn (distinct) roots of f(x) as a polynomial with
coefficients in Zp. Certainly we obtain F if we adjoin these elements to Zp, so F is the splitting field of f(x)
over Zp. The same argument would show that any other field with pn elements is the splitting field of f(x)
over Zp, and since any two splitting fields for the same polynomial are isomorphic, any two finite fields with
the same number of elements must be isomorphic.

For (iv) and (v) first suppose we have Zp ⊆ F ⊆ K. Then m = [K : Zp] = [K : F ] · [F : Zp] = [K : F ] · n,
showing n divides m. Conversely, suppose n | m, and |K| = pm. Since K is Galois over Zp with Galois

group G := Gal(K/Zp) generated by the Frobenius map φ (by problem 2), |G| = m since φm(α) = αp
m

= α,
for all α ∈ K. Write m = nc and let H be the subgroup of G generated by φn and F := KH . Then
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[F : Zp] = [G : H] = n, so |F | = pn. Since H is the unique subgroup of G having index n, F is the unique
subfield of K with pn elements (by the Galois Correspondence Theorem).

2. Let p be a prime and Zp ⊆ K be a finite extension. Prove that K is Galois over Zp with Galois group
generated by the Frobenius map φ(α) = αp, for all α ∈ K. Conclude that any finite extension F ⊆ K of
finite fields is a Galois extension with cyclic Galois group.

Solution. Suppose |K| = pm, so that every element α ∈ K has the property that φm(α) = αp
m

= α. Thus
φm is the identity element in G := Gal(K/Zp). Suppose φr is the identity, for some r < m. Then for all

α ∈ K, α = φr(α) = αp
r

, which implies that xp
r − x has pm roots, a contradiction. Thus

m = 〈φ〉 ≤ G ≤ [K : Zp] = m.

It follows that G = 〈φ〉 and |G| = [K : Zp], so K is a Galois extension of Zp whose Galois group is generated
by φ. For the second statement, if F ⊆ K is a finite extension of fields, then we have Zp ⊆ F ⊆ K, for some
prime p, and since K is Galois over Zp, it is also Galois over F , by the Galois Correspondence Theorem.
Since Gal(K/F ) ⊆ Gal(K/Zp), and the latter group is cyclic, Gal(K/F ) is also cyclic.

3. Let p be a prime and x, y indeterminates over Zp. Set F := Zp(xp, yp) and K := Zp(x, y). Find (with
proof) infinitely may intermediate fields between F and K. Hint: Review the proof of the existence of
primitive elements.

Solution. The same proof from class when p = 2 will show that there is no primitive element for the extension
F ⊆ K. We claim the fields F (x+ xp

n

y) are distinct, for n ≥ 1. Suppose E := F (x+ xp
n

y) = F (x+ xp
m

y),
with n 6= m. Then (x + xp

n

y) − (x + xp
m

y) = (xp
n − xpm)y ∈ E. Since xp

n − xpm ∈ F , we have y ∈ E.
Thus, xp

n

y ∈ E, and hence x ∈ E. It follows that K = E = F (x+ xp
n

y), a contradiction. Thus, the fields
F (x+ xp

n

y) are distinct, and hence there are infinitely many intermediate fields between F and K.

4. Construct a field with K with 32 elements, find Gal(K/Z2) and show that K is Galois over Z2. Then
exhibit the one-to-one correspondence between the intermediate fields between Z2 and K and the subgroups
of Gal(K/Z2).

Solution. By problem 1, if K denotes the splitting field of x32−x over Z2, then K is a field with 32 elements,
and by problem 2, K is Galois over Z2. Moreover, [K : Z2] = 5 and Gal(K/Z2) ∼= Z5. Since there are no
proper subgroups of Z5, by the Galois Correspondence Theorem there are no intermediate fields between Z2

and K.

5. Let γ ∈ C be a primitive 8th root of unity, e.g., e
2πi
8 . Set α := γ+ γ2. Find p(x), the minimal polynomial

of α over Q, and all of its roots.

Solution. Since γ satisfies x8 − 1 = (x4 − 1)(x4 + 1), and does not satisfy x4 − 1, γ satisfies x4 + 1. To
see that x4 + 1 is irreducible over Q, since it is a primitive polynomial, it suffices to show that x4 + 1 is
irreducible over Z. x4 + 1 clearly has no roots in Z, so one has to show that there is not an equation of the
form x4 + 1 = (x2 + ax + b)(x2 + cx + d), with a, b, c, d ∈ Z. This polynomial equation yields a system of
four equations in the unknowns a, b, c, d which is easily seen to not have a solution in Z, so that x4 + 1 is
irreducible over Q. Thus, x4 + 1 is the minimal polynomial of γ over Q. It follows that [Q(γ) : Q] = 4 and
1, γ, γ2, γ3 is a basis for Q(γ) over Q. Multiplying each basis element by α yields the following system of
equations

α · 1 = 0 · 1 + 1 · γ + 1 · γ2 + 0 · γ3

α · γ = 0 · 1 + 0 · γ + 1 · γ2 + 1 · γ3

α · γ2 = −1 · 1 + 0 · γ + 0 · γ2 + 1 · γ3

α · γ3 = −1 · 1 +−1 · γ + 0 · γ2 + 0 · γ3.
We may rewrite this sytem of equation as a matrix equation

α −1 −1 0
0 α −1 −1
1 0 α −1
1 1 0 α

 ·


1
γ
γ2

γ3

 =


0
0
0
0

 .
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Since the corresponding system of equations has a non-trivial solution, the determinant of the coefficient
matrix equals zero. This shows that α is a root of the polynomial p(x) = x4 + 2x2 + 4x+ 2. By Eisenstein’s
criterion, p(x) is irreducible over Q, so that p(x) is the minimal polynomial for α over Q.

There are several ways to find the other roots of p(x). Here is one way. Set K := Q(γ) and compute
Gal(K/Q). Since [K : Q] = 4 and K is Galois over Q (its a simple extension that is the splitting field of
x4 + 1 over Q - see the April 24 Daily Update), there are three non-trial elements in Gal(K/F ). If we apply
these automorphisms to α, we will obtain the other roots of p(x). Now, γ, γ3, γ5, γ7 are the four primitive 8th

roots of unity, and hence are the roots of x4 + 1. It follows that the non-trivial automorphisms of Gal(K/Q)
take γ to the elements γ3, γ5, γ7, respectively. If we call these automorphisms, σ, τ, δ, we have:

(i) σ(α) = σ(γ) + σ(γ)2 = γ3 + γ6.
(ii) τ(α) = τ(γ) + τ(γ)2 = γ5 + γ10 = γ2 + γ5.
(iii) δ(α) = δ(γ) + δ(γ)2 = γ7 + γ14 = γ6 + γ7.

Thus, the roots of p(x) are γ, γ3 + γ6, γ2 + γ5, γ6 + γ7.

6. Let K denote the splitting field of (x2 − 2)(x2 − 3)(x2 − 5) over Q. Find (with proof) Gal(K/Q) and
then use the Galois correspondence theorem to find (with proof) all intermediate fields between Q and K.
Hints: (i) The Galois group in question will be abelian. It may be more convenient to write this group
multiplicatively, rather than additively. (ii) If A,B are abelian groups, there may be more subgroups of
A×B than just subgroups of the form H ×K, where H is a subgroup of A and K is a subgroup of B.

Solution. Note that K := Q(
√

2,
√

3,
√

5). From the lecture of April 24 we have Q(
√

2,
√

3) has degree four

over Q and has intermediate fields Q(
√

2),Q(
√

3),Q(
√

6). It is easy to see that
√

5 does not belong to any of

these fields, therefore
√

5 6∈ Q(
√

2,
√

3) (since Q(
√

2,
√

3) cannot equal Q(
√

5)). Therefore [K : Q(
√

2,
√

3)] =
2, and thus, [K : Q] = 8. We argue that Gal(K/Q) ∼= Z2 × Z2 × Z2. The proof is similar to the proof that

the Galois group of Q(
√

2,
√

3) over Q is Z2 × Z2, as given in the April 24 lecture. Now, if σ ∈ Gal(K/Q),

σ(
√

2) = ±
√

2, σ(
√

3) = ±
√

3, σ(
√

5) = ±
√

(5). There are eight possible such automorphisms and they all

exist. For example, to see that there is σ ∈ Gal(K/Q) such that σ(
√

2) = −
√

2, σ(
√

3) = −
√

3, σ(
√

5) = −
√

5,

we start with the automorphism φ : Q(
√

2,
√

3)→ Q(
√

2,
√

3) that takes
√

2 to −
√

2 and
√

3 to −
√

3, which

exists by the lecture of April 14. Now the minimal polynomial of
√

5 over Q(
√

2,
√

3) is x2 − 5. Thus, by

the crucial proposition from April 14 there exists a field isomorphism σ : Q(
√

2,
√

3)(
√

5)→ Q(
√

2,
√

3)(
√

5)

such that σ extends φ and σ(
√

5) = −
√

5. Thus, σ ∈ Gal(K/F ) has the required properties. It is easy to
see that σ2 = id. In a similar way, we can create six other non-identity elements that take any combination
of roots to x2− 2, x2− 3, x2− 5 to any other combination of corresponding roots. In fact, the easiest way to
see this is to take φ to be any one of the four elements of Gal(Q(

√
2,
√

3)/Q) found on April 14 and to apply

the crucial proposition from April 14 to extend each of these to K by sending
√

5 to
√

5 or
√

5 to −
√

5.

We can easily identify Gal(K/Q) as Z2 × Z2 × Z2 if we write Z2 = {1,−1} as a multiplicative group. Then
the elements of Z2 × Z2 × Z2 are:

(1, 1, 1), (−1, 1, 1), (1,−1, 1), (1, 1,−1), (−1,−1, 1), (1,−1, 1), (1, 1,−1), (−1,−1,−1).

Clearly, σ as defined above corresponds to (−1,−1,−1). And likewise, the element τ ∈ Gal(K/Q) that takes√
2 to

√
2,
√

3 to −
√

3,
√

5 to −
√

5 is identified with (1,−1,−1). If one identifies the elements of Gal(K/Q)
with the triples above, and writes out the two groups tables, one can see the required isomorphism of groups.

As for the subgroups of Gal(K/Q) = Z2 × Z2 × Z2, one has to be a bit careful, since if A,B are groups,
then the subgroups of A × B are not only the subgroups H ×K, where H is a subgroup of A and K is a
subgroup of B. While the H ×K are certainly subgroups of A × B, not every subgroup of A × B has this
form. 1 However, if L ⊆ A×B is a subgroup, then L1 the set of first components of the elements of L forms
a subgroup of A and similarly, L2, the second components of the elements of L form a subgroup of B, and
L ⊆ L1×L2. This latter fact will still help us identity the subgroups of Z2×Z2×Z2 = Gal(K/Q). The first
thing to note is that every non-identity element of Z2 × Z2 × Z2 has order two, hence they each generate a

1For what it’s worth: It is true for rings with identity that if J ⊆ R1×R2 is an ideal in the product of rings, then J = I1×I2,
for ideals I1 ⊆ R1 and I2 ⊆ R2.
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subgroup of order two and account for all subgroups of Z2 × Z2 × Z2 of order two. Let us identify each of
these subgroups by their generators:

C1 ↔ (−1, 1, 1)

C2 ↔ (1,−1, 1)

C3 ↔ (1, 1,−1)

C4 ↔ (−1,−1, 1)

C5 ↔ (1,−1,−1)

C6 ↔ (−1, 1,−1)

C7 ↔ (−1,−1,−1)

Since each of these subgroups has index four in Z2 × Z2 × Z2, their fixed fields have degree four over Q.
For ease of notation, we will write C ′i instead of KCi for the fixed field of Ci. With the identification of

Z2×Z2×Z2 with Gal(K/Q) above, it is clear, say, that C1 fixes
√

3,
√

5, and therefore Q(
√

3,
√

5) ⊆ C ′ and

since Q(
√

3,
√

5) has degree four over Q, we must have C ′1 = Q(
√

3,
√

5). Another case: C4 clearly fixes
√

6

and
√

5, so that C ′4 = Q(
√

6,
√

5). Thus, we obtain

C ′1 = Q(
√

3,
√

5)

C ′2 = Q(
√

2,
√

5)

C ′3 = Q(
√

2,
√

3)

C ′4 = Q(
√

6,
√

5)

C ′5 = Q(
√

2,
√

15)

C ′6 = Q(
√

3,
√

10)

C ′7 = Q(
√

6,
√

15).

It might seem that we have omitted some subfields of degree four over Q, say E := Q(
√

10,
√

15). But√
10 ·
√

15 = 5
√

6 ∈ E, and thus
√

6 ∈ E. Therefore, E contains Q(
√

6,
√

15), which forces E = C ′7. This
shows the power of the Galois Correspondence Theorem. We have accounted for all of the subgroups of
Gal(K/F ) of order two, and have therefore accounted for all of the intermediated field having degree four
over Q, even though there may be multiple ways to represent each intermediate field.

We now identify seven subgroups of order four, K1, . . . , ,K7. Since these subgroups have index two in
Z2 × Z2 × Z2 = Gal(K/Q), it will follow that their fixed fields K ′i (using the same notation as before) will

have degree two over Q. Note that a basis for K over F is 1,
√

2,
√

3,
√

6,
√

5,
√

10,
√

15,
√

30. If we adjoin
each of the basis elements, except 1, to Q this will give us seven of the expected fixed fields of degree two
over Q. But we also need to see which fixed field corresponds to which subgroup of order four and that there
are no other intermediate fields having degree two over Q.

We first identify the subgroups of order four having the form H × K. Let G := Gal(Q(
√

2,
√

3)/Q).
Then K1 := G× {1} is a subgroup of order four. If we let σ2, σ3, σ4 in G be the automorphisms satisfying:

σ2(
√

2) =
√

2 and σ2(
√

3) = −
√

3; σ3(
√

2) = −
√

2 and σ3(
√

3) =
√

3; σ4(
√

2) = −
√

2 and σ4(
√

3) = −
√

3
and set H2 := 〈σ2〉, H3 := 〈σ3〉, H4 := 〈σ4〉 to be the corresponding subgroups, then K2 := H2 × Z2,K3 :=
H3 × Z2,K4 := H4 × Z2 are the remaining subgroups of Gal(K/F ) of the form H ×K. Note that in terms
of Z2 × Z2 × Z2 we have

K1 = {(1, 1, 1), (−1, 1, 1), (1,−1, 1), (−1,−1, 1)}
K2 = {(1, 1, 1), (1, 1,−1), (1,−1, 1), (1,−1,−1)}
K3 = {(1, 1, 1), (1, 1,−1), (−1, 1, 1), (−1, 1,−1)}
K4 = {(1, 1, 1), (1, 1,−1), (−1,−1, 1), (−1,−1,−1)}.
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We can now see that the corresponding fixed fields are

K ′1 = Q(
√

5)

K ′2 = Q(
√

2)

K ′3 = Q(
√

3)

K ′4 = Q(
√

6).

We now list three more subgroups of order four:

K5 = {(1, 1, 1), (−1,−1, 1), (−1, 1,−1), (1,−1,−1)}
K6 = {(1, 1, 1), (−1,−1,−1), (1,−1, 1), (−1, 1,−1)}
K7 = {(1, 1, 1), (−1,−1,−1), (−1, 1, 1), (1,−1,−1)}.

For these subgroups, we clearly have

K ′5 = Q(
√

30)

K ′6 = Q(
√

10)

K ′7 = Q(
√

15).

To see that we have accounted for all of the subgroups, and hence, all of the intermediate fields, we just have
to see that there are no more subgroups of order four. Let us do so by examining the last coordinates of the
elements of a subgroup of order four. If all of the last coordinates are 1, there is clearly one such subgroup,
namely, K1. If at least one element, say a has last coordinate -1, there has to be at least two such elements,
because, if b is a non-identity element with 1 as last coordinate, ab is a non-identity element with -1 as a last
coordinate. On the other hand, if a, b are non-identity elements, with -1 as the last coordinate, ab has last
coordinate 1. Thus, except for K1, any subgroup of order four has two elements with last coordinate 1 and
two elements with last coordinate -1. Now, Z2 × Z2 × Z2 has four elements with -1 in the last coordinate.
There are six ways to choose two of them, say a, b. Then it is not hard to see that {(1, 1, 1), a, b, ab} forms a
subgroup of Z2 ×Z2 ×Z2. Since there are six ways to do this, and we have found six such subgroups above,
we have accounted for all possible subgroups of order four, and therefore all intermediate fields having degree
two over Q. �

7. Set F := Q(i) and K = F ( 8
√

2). Show that K is Galois over F with Gal(K/F ) ∼= Z8 and find (with proof)
all intermediate fields between F and K. Hint: Show that K contains a primitive 8th root of unity.

Solution. Set ε := e
2πi
8 , a primitive 8th root of unity, and γ := 8

√
2, a real 8th root of 2. Note that γ2 = 4

√
2

and γ4 =
√

2. Note also that ε = γ4

2 +iγ
4

2 ∈ K. Now K = F (γ) is the splitting field for f(x) := x8−2 over F ,

since the roots of f(x) are γεi, with 0 ≤ i ≤ 7. Thus, K is Galois over F . Now, [K : Q] = [Q(i, γ) : Q] = 16,
since [Q(γ) : Q] = 8 and i 6∈ Q(γ). It follows that [K : F ] = 8 and f(x) is irreducible over F . Therefore,
|Gal(K/F )| = 8.

We now let σ : K → K be the automorphism of K fixing F satisfying σ(γ) = ε5γ. Then

σ(ε) =
σ(γ4)

2
+
σ(γ4)

2
=
σ(γ)4

2
+ i

σ(γ)4

2
=
ε20γ4

2
+ i

ε20γ4

2
= ε4 · {γ

4

2
+ i

γ4

2
} = ε5.

From the equations σ(γ) = ε5γ and σ(ε) = ε5, we readily obtain

σ2(γ) = ε6γ

σ3(γ) = ε3γ

σ4(γ) = ε4γ

σ5(γ) = εγ

σ6(γ) = ε2γ

σ7(γ) = ε7γ

σ8(γ) = γ.

5



This shows that σ has order eight as an element of Gal(K/Q), which gives Gal(K/Q) = 〈σ〉 ∼= Z8. Thus,
〈σ4〉 and 〈σ2〉 are the only proper subgroups of Gal(K/Q). Again, the equations σ(γ) = ε5γ and σ(ε) = ε5

yield σ2(γ4) = γ4 =
√

2. Moreover, since [Gal(K/F ) : 〈σ2〉] = 2, we have [Kσ2

: F ] = 2. It follows that

Kσ2

= F (
√

2). Similarly, σ4(γ2) = γ2 = 4
√

2. And, so, in similar fashion, Kσ4

= F ( 4
√

2). Thus, the diagram
of intermediate fields between F and K is:

F ( F (
√

2) ( F (
4
√

2) ( K.

8. Let Q denote an algebraic closure of Q. Use Zorn’s lemma to prove that there exists a subfield F of Q
maximal with respect to the property of not containing

√
2. Then show that [K : F ] is even for every finite

extension of fields F ⊆ K.

Solution. Let S denote the subfields of Q containing Q, but not containing
√

2. If {Eα}α∈A is a chain in
S, then, as we have seen before, L :=

⋃
α∈AEα is a field, certainly contained in Q and it clearly does not

contain
√

2. Thus, L is an upper bound for the chain in S. Therefore, S has a maximal element, F . Now,
if K is a finite extension of F , then

√
2 ∈ K, and thus F ( F (

√
2) ⊆ K. Since [F (

√
2) : F ] = 2, using the

multiplicative property of the degree symbol, it follows that [K : F ] is even.

9. Suppose F ⊆ K is a finite extension and K is the splitting field of p(x) ∈ F [x] over F . Follow the ideas
from the Lecture 36 in class to show that if f(x) ∈ F [x] is irreducible and has a root in K, then it splits
over K. The key idea is to show that if τ : K → F is a field isomorphism fixing F , then τ(K) = K. Here
we do not assume that p(x) is irreducible.

Solution. Suppose p(x) has degree d and p(x) = (x − α1) · · · (x − αd), with each αj ∈ K, not nec-

essarily distinct. Thus, K = F (α1, . . . , αd). Suppose τ : K → F is a field isomorphism fixing F .
Then {α1, . . . , αd} = {τ(α1), . . . , τ(αd)}, since τ permutes the roots of p(x). Since τ fixes F , we have
τ(K) = F (τ(α1), . . . , τ(αd)) = K.

Now let f(x) ∈ F [x] be irreducible and have a root γ ∈ K. Let β ∈ F be any other root of f(x). Then there
exists an isomorphism σ : F (γ)→ F (β) fixing F such that σ(γ) = β (by the crucial proposition of April 14).
Now, K = F (γ)(α1, . . . , αd) is the splitting field of p(x) over F (β). By the first application of the crucial
proposition (see the April 19 Daily Update), we may extend σ to a field isomorphism σ̂ : K → σ̂(K). By
the first paragraph above, σ̂(K) = K. Since σ̂(γ) = β, we have β ∈ K. Since β was arbitrary, K contains
all of the roots of f(x), and thus f(x) splits over K.

10. Consider f(x) = x3 − 4x+ 2.

(i) Show that f(x) is irreducible over Q.
(ii) Prove that f(x) has three real roots. (Hint: Use calculus!)

(iii) Let ε be a primitive 3rd root of unity and set α := 3

√√
111i
9 − 1. Show that the three roots of f(x)

are:

α+
4

3α
, αε+

4

3αε
, and αε2 +

4

3αε2
.

Comment. Recall that any degree three polynomial with coefficient in Q is solvable by radicals, which
means that its roots, or equivalently, its splitting field, can be obtained by adjoining sequences of square
roots, cube roots of elements to Q that are already obtained from elements of Q by taking a sequence of
roots of elements from Q, etc, as is the case for the roots of f(x) above.2 This problem is an illustration
of the classical result known as Casus irreducibilis states that no irreducible cubic polynomial in Q[x] has
its splitting field contained in a real radical extension. In other words, even though the roots of f(x) are
real numbers, that can be extracted by taking sequences of square roots and cube roots, this process of root
taking cannot be done entirely within the real number system.

Solution. For (i), that f(x) is irreducible over Q follows from Gauss’s Lemma and Eisenstein’s criterion.

2The formal definition is as follows: f(x) ∈ F [x] is solvable by radicals if its splitting field is contained in an extension of
the form F (α1, . . . , αr), where for each 1 ≤ i ≤ r, αni

i ∈ F (α1, . . . , αi−1), for some ni ≥ 1.

The famous theorem of Galois concerning solvability by radicals asserts: Let f(x) ∈ F [x] and write K for the splitting field of

f(x) over F . Then f(x) is solvable by radicals if and only if Gal(K/F ) is a solvable group.

6



Part (ii) is essentially a calculus problem. f(x) has two critical points, one a minimum below the x-axis, and
the other a maximum, above the x-axis. This together with the fact that f(x) is a polynomial of degree 3
insures that the graph of f(x) crosses the x-axis exactly three times.

For (iii), we re-write and label the given elements as

r1 := α+
4

3α
, r2 := αε+

4ε2

3α
, and r3 := αε2 +

4ε

3α
.

We now compute the elementary symmetric expressions in r1, r2, r3.

r1 + r2 + r3 = α+
4

3α
+ αε+

4ε2

3α
+ αε2 +

4ε

3α

= (α+ αε+ αε2) + (
4

3α
+

4ε2

3α
+

4ε

3α
)

= α(1 + ε+ ε2) +
4

3α
(1 + ε+ ε2)

= 0 + 0 = 0.

r1r2 = (α+
4

3α
)(αε+

4ε2

3α
) = α2ε+

4

3
(ε+ ε2) +

16

9α2
ε2

r1r3 = (α+
4

3α
)(αε2 +

4ε

3α
) = α2ε2 +

4

3
(ε2 + ε) +

16

9α2
ε

r2r3 = (αε+
4ε2

3α
)(αε2 +

4ε

3α
) = α2 +

4

3
(ε2 + ε) +

16

9α2

Thus, using 1 + ε+ ε2 = 0, and simplifying, we have r1r2 + r1r3 + r2r3 = − 4
3 −

4
3 −

4
3 = −4.

r1r2r3 = (α+
4

3α
)(αε+

4ε2

3α
)(αε2 +

4ε

3α
)

= (α2ε+
4

3
(ε+ ε2) +

16

9
ε2)(αε2 +

4ε

3α
)

= α3 +
4

3
(1 + ε)α+

16

9α
ε+

4

3
ε2α+

16

9α
(1 + ε2) +

64

27α3

= α3 +
64

27α3

=

√
111i

9
− 1 +

64

27(
√
111i
9 − 1)

=

√
111i

9
− 1 +

64(
√
111i
9 + 1)

27(−11181 − 1)

=

√
111i

9
− 1− (

√
111i

9
+ 1)

= −2.

This gives f(x) = (x− r1)(x− r2)(x− r3), which shows that r1, r2, r3 are the roots of f(x). �
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